Skip to main content

Minimum moves for balancing brackets

You’re given a non-empty string made in its entirety from opening and closing braces. Your task is to find the minimum number of “operations” needed to make the string stable. The definition of being stable is as follows:
  1. An empty string is stable.
  2. If S is stable, then {S} is also stable.
  3. If S and T are both stable, then ST (the concatenation of the two) is also stable.
All of these strings are stable: {}, {}{}, and {{}{}}; But none of these: }{, {{}{, nor {}{.
The only operation allowed on the string is to replace an opening brace with a closing brace, or visa-versa.


Solution Heuristics: Traverse the string. When the number of opening braces( { ) matches the number of closing braces ( } ), the string is balanced. Else it's not balanced. So count both of them. Make a list. Insert only opening braces. If a closing brace is found delete one brace( if the size of the list is > 0 ) from the list. Because they would make a pair. If the list is empty then we'll convert the just found closing brace to opening brace and insert into the list. This will count as a move. When the iteration is finished, we will reverse half of the braces in the list and they will also count as moves. Now, find out the total summation of the moves for result.

Practice Problem: SPOJ ANARC09A - Seinfeld


Comments

Popular posts from this blog

SPOJ - GSS1

Considering input series: { 4 , -10 , 3 , 100 , -20 , 1 } Query(x,y) = Max { a[i]+a[i+1]+...+a[j] ; x ≤ i ≤ j ≤ y } A node contains-  [ START & END is a node's segment limit ] Prefix is the maximum sum starting at START, end can be anywhere. There are two possibilities of the maximum. One, node's leftChild's prefix or two, adding leftChild's sum + rightChild's prefix. (which will make the prefix contiguous) Suffix is the maximum sum ending at END, start can be anywhere. There's two possibility of the maximum. One, node's rightChild's already calculated suffix or two, add rightChild's sum + leftChild's suffix   (which will make the suffix contiguous). Sum : leftChild's sum + rightChild's sum. MAX Maximum of  -  prefix (result is in the node, starts from START but doesn't end in END ) suffix  (result is in the node, doesn't start from START but surely ends in END ) leftChild's max ( result is in left ...

SPOJ 95 - STPAR - Street Parade

Problem Statement Heuristics:   Let, N be the number which is next in fixed order. Take an input X , if it is equal to N then next number will be n++. If not, then search for N in the side lane and after finishing the search, put X in the side lane. After all X is processed but N is not found in either X or side lane, then the order is not possible. Solution:

SPOJ 394- ACODE

Problem Statement As from the problem-tag, you can see this is a DP( Dynamic Programming ) problem. Don't know Dynamic Programming? Here are some articles: Codechef , TopCoder . Try to solve a sample problem, for example, Fibonacci Numbers. Let's start cracking the problem. To solve a DP problem, the hardest and important part is to find the relation between previous or next steps and current step . We need to find out how the solution of the current step depends on its previous steps or next steps. Looking at:      2 5 1 1 4        from left to right Step 1: You can only interpret this as 2(B). Decoding- B EAAD  So, DP[1] = 1 Step 2: This can be 5(E) or collaborating with 2, it can be 25(Y). Result is BE AAD + Y AAD . So, DP[2] = 2 Step 3: Can only be interpreted as 1(A). 51 is not valid, as stated in problem. BEA AD + YA AD . DP[3] = 2.  Step 4: Will be interpreted as 1(A). BEAA D + YAA D+... ...