Skip to main content

SPOJ-PIGBANK | Unbounded Knapsack ( Minimization)

Unbounded Knapsack: Given a knapsack weight W and a set of N items with certain value Vi and weight Wi, we need to calculate minimum amount that could make up this quantity exactly. To have a more clear understanding of this problem, see SPOJ-PIGBANK

Sample Problem: We're given a box which can hold maximum W weight. There are N various coins each of value Vi and Weight Wi. We need to fill the box with total W weight with any number of coins of any value. Note that coins are unlimited. 


100 ----- W 
2 ------- N
1 1 ----- vi,wi    
30 50 --- vi,wi 

Answer of the problem above is, 60. If we take 2 coins of value 30, weight 50, we'll get exactly weight 100 with a minimum value of 60.

Algorithm: This is a DP solution. To get the solution for W=100, we'll solve subproblems first. Let dp[W+1]  be an array which will store the subproblems solutions. In the end, dp[W] will give us the minimum amount. Subproblems soultion will be the minimum of taking the coin Vk + solution for dp[ weight left after taking that coin ] or not taking that coin; where k ranges from 1 to N; meaning loop will run for all types of coins.

Here's a solution for SPOJ-PIGBANK:

Comments

Popular posts from this blog

SPOJ - GSS1

Considering input series: { 4 , -10 , 3 , 100 , -20 , 1 } Query(x,y) = Max { a[i]+a[i+1]+...+a[j] ; x ≤ i ≤ j ≤ y } A node contains-  [ START & END is a node's segment limit ] Prefix is the maximum sum starting at START, end can be anywhere. There are two possibilities of the maximum. One, node's leftChild's prefix or two, adding leftChild's sum + rightChild's prefix. (which will make the prefix contiguous) Suffix is the maximum sum ending at END, start can be anywhere. There's two possibility of the maximum. One, node's rightChild's already calculated suffix or two, add rightChild's sum + leftChild's suffix   (which will make the suffix contiguous). Sum : leftChild's sum + rightChild's sum. MAX Maximum of  -  prefix (result is in the node, starts from START but doesn't end in END ) suffix  (result is in the node, doesn't start from START but surely ends in END ) leftChild's max ( result is in left ...

SPOJ 95 - STPAR - Street Parade

Problem Statement Heuristics:   Let, N be the number which is next in fixed order. Take an input X , if it is equal to N then next number will be n++. If not, then search for N in the side lane and after finishing the search, put X in the side lane. After all X is processed but N is not found in either X or side lane, then the order is not possible. Solution:

SPOJ 394- ACODE

Problem Statement As from the problem-tag, you can see this is a DP( Dynamic Programming ) problem. Don't know Dynamic Programming? Here are some articles: Codechef , TopCoder . Try to solve a sample problem, for example, Fibonacci Numbers. Let's start cracking the problem. To solve a DP problem, the hardest and important part is to find the relation between previous or next steps and current step . We need to find out how the solution of the current step depends on its previous steps or next steps. Looking at:      2 5 1 1 4        from left to right Step 1: You can only interpret this as 2(B). Decoding- B EAAD  So, DP[1] = 1 Step 2: This can be 5(E) or collaborating with 2, it can be 25(Y). Result is BE AAD + Y AAD . So, DP[2] = 2 Step 3: Can only be interpreted as 1(A). 51 is not valid, as stated in problem. BEA AD + YA AD . DP[3] = 2.  Step 4: Will be interpreted as 1(A). BEAA D + YAA D+... ...